

BUTANOL PRODUCTION FROM VOLATILE FEEDSTOCKS. DEVELOPMENT OF AN OPTIMIZED BIOPROCESS

Florian Gattermayr^{1,2}, Viktoria Leitner¹, Christoph Herwig²
¹Wood K Plus, Area Wood Chemistry and Biotechnology, Linz, Austria
²Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria.

Kompetenzzentrum Holz GmbH

Combined Agro-Forest Biorefinery

Overall goal

"Utilise a multifeedstock biorefinery process to efficiently convert lignocellulosic waste streams into high value-added chemicals such as butanol."

Multifeedstock biorefinery – challenges

- Volatile and complex substrates
 - Regional and seasonal variability
 - Homogeneity
 - Quality
 - Inhibitors
- Transport
 - Density of the resource
 - Economy ecology

source: vecteezy.com

KPIUS

Biorefinery concepts - overview

figure based on Danner & Braun (1999), Cherubini et al. (2009) and Arslan (2014)

KPLUS

KPLUS

Carboxylate platform

KPLUS

ABE Fermentation

Two characteristic phases:

- Acidogenesis (production of acids)
- Solventogenesis (reutilisation of acids, production of solvents)

Research goals

Goals

- Investigate the influences of acid feed fluctuation on process stability
- Design a model which is able to describe culture response and solvent production

First steps

- Set up a fermentation system with the capability of getting reliable and consistent data
- Understand the fermentation kinetics through kinetic studies an model validation for varying input feed

Fermentation experiments

Objectives

 Specific uptake rates of glucose, xylose, butyric acid and acetic acid during solventogenic phase fermentation

Why?

- Gain information on robustness of our culture
- Gain information for designing continuous fermentation experiments
- Gain knowledge and deep process platform understanding

How?

- Pulse experiments in batch mode fermentations
- Pulse experiments in continuous mode fermentations

Conclusions so far

- Set up a fermentation system for the determination of specific uptake rates
- Showed successful uptake of added butyric and acetic acid and their conversion to solvents
- Acids are only taken up when glucose is present
- Butyric acid seems to be more toxic than acetic acid (2.4 g L⁻¹ of butyric acid in the fermentation broth resulted in a complete collapse within 2 h)

Outlook

- Transition to a semi continuous fermentation to conduct more pulse experiments in less time
- Continuous pH stat fermentation on acid feed with media fluctuation simulated
- Design a model which is able to describe culture response and solvent production
- Test prediction capability of model on actual medium based on lignocellulosic waste streams

Thank you for your attention!

Contact: Kompetenzzentrum Holz GmbH Altenberger Straße 69 A-4040 Linz

E-Mail: f.gattermayr@kplus-wood.at Homepage: www.wood-kplus.at

. .

Europäische Union Investitionen in Wachstum & Beschäftigung. Österreich.