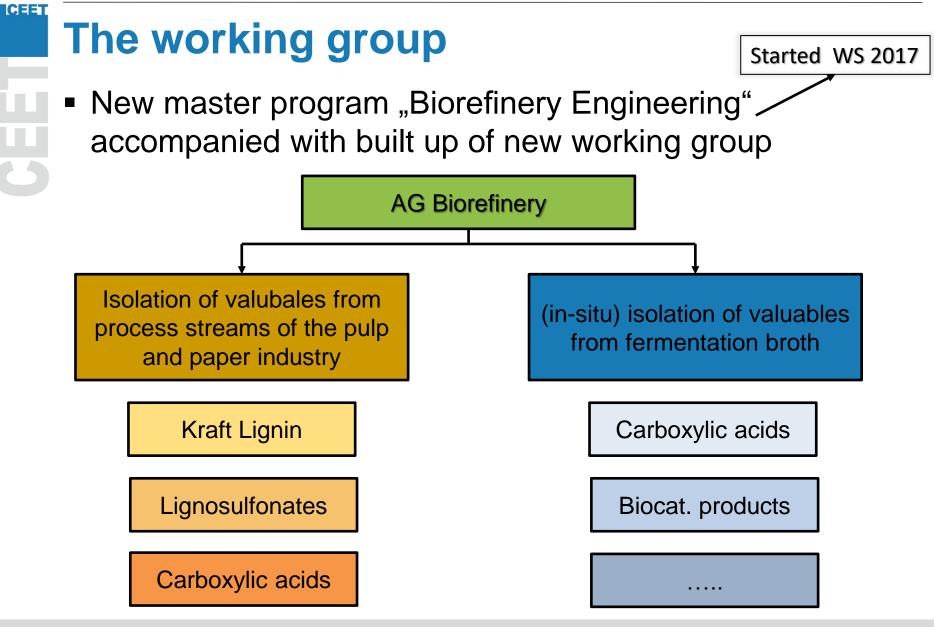


Lignins and more

Biorefinery at the Institute of Chemical Engineering and Environmental Technology -TUGraz Marlene Kienberger Institute of Chemical Engineering and Environmental Technology (CEET) Graz University of Technology Austria

www.tugraz.at

CEET


Challenges and solutions

Standard unit operations need to be adapted respectively new technologies need to be designed

- Challenges
 - => dilute process streams
 - => difficult process matrix (pH, T, suspended matter, cell debris, intra cellular products,....)
 - => emulsion and crud formation
- Solutions
 - => new technologies are partially there
 - => membrane technologies are emerging
 - => bioprocess technology in combination with chemical engineering early in the development

Running projects

- Flippr² COMET (2017 2021)
- Development of continuously operated Kraft lignin isolation and process integration thereof

KrAcid – bridge 1 (2018 – 2021)

- Isolation of carboxylic acids from Kraft pulping
 BET Horizon 2020 (2015 2019)
- Master programs, innovative learning formates, etc...
 Membrane separations IEA task Annex 17 (2017 2019)
 Direct cooperation (2018)
- REACH- solvent replacement, isolation of lignosulfonates, ...

Research guideline

 Selective in-situ isolation of valuables (e.g. lactic acid) from aqueous process streams

Inlet stream knwon pH, T, p c_{valuables}, c_{others} Mass transfer unit operations

- 1. Thermodynamic basics
 - 2. Hydrodynamic basics
- 3. Technology development

4. Process

Research guideline – reactive extraction

- Variation in the organic phase: ration between tri-octylamine (TOA)/1-octanol/*n*-undecane
- Carboxylic acid and concentration thereof (0.1 1 mol/L)
- Temperature (25 45°C)
- Back-extraction (NaHCO₃, H₂O, HCI)
- Transfer to liquid membrane permeation
- Increase of selectivity: further reactive extractants (Cyanex, Aliquat, TBP)

Research guideline

 Selective in-situ isolation of valuables (e.g. lactic acid) from aqueous process streams

Inlet stream knwon pH, T, p c_{valuables}, c_{others} Mass transfer unit operations

- **1. Thermodynamic basics**
 - 2. Hydrodynamic basics
- 3. Technology development

4. Process

Thermodynamic basics - phase equilibria Determination of *n* and K_{St} $nLA_{aq} + TOA_{org} \leftrightarrow (TOA(LA)_n)_{org}$ $K_{st} = \frac{c_{TOA}(LA)_{n,org}}{c_{HA}^n ag}$

$$\frac{1}{c_{\text{LA, org}}} = \frac{1}{n K_{st} c_{\text{LA, aq, nondiss}}^{n} c_{\text{TOA, 0, org}}} + \frac{1}{c_{\text{TOA, 0, org}}} n$$

Determination of the selectivity

$$S_{a,b} = \frac{c_{b,stripp} \cdot c_{a,feed}}{c_{a,stripp} \cdot c_{b,feed}}$$

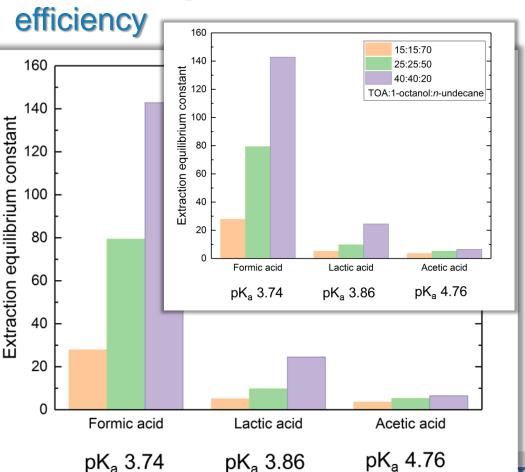
Netzwerktreffen Bioraffinerie

CEET **Results – lactic acid** 10 15 wt% TOA:15 wt% 1-octanol:70 wt% n-undecane 25 wt% TOA:25 wt% 1-octanol:50 wt% n-undecane 40 wt% TOA:40 wt% 1-octanol:20 wt% n-undecane 8 y = 1.03x + 0.89 $R^2 = 0.99$ 1/c_{LA,sol} (L/mol) 6 y = 0.19x + 0.89 $R^2 = 0.99$ 4 y = 0.05x + 0.68 $R^2 = 0.99$ 2 TOA 1-octanol n-undecane K_{St} n 0 20 40 60 80 (wt%) (wt%) (wt%) 1/c_{LA,aq,nondiss} (L/mol) 0.13 1.42 20 80 20.03 0.99 80 20 -15 15 70 0.81 3 53 9.73 25 25 50 0.97 0.85 24.48 40 40 20 TU Graz I Institute of Chemical Engineering and Environmental T 9

CEET

Results – carboxylic acid

- Concentration of the acids
 - The higher the concentration the higher is the extraction
- Lactic acid, acetic acid and formic acid


Extraction foll pK_a of the aci

• Temperature (25 – 4

Temperature

• Stripping (NaHCO₃,

Back-extraction

Research question

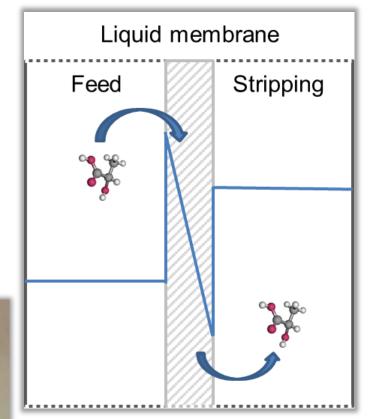
 Selective in-situ isolation of valuables (e.g. lactic acid) from aqueous process streams

Inlet stream knwon pH, T, p c_{valuables}, c_{others}

Mass transfer unit operations

- 1. Thermodynamic basics
 - 2. Hydrodynamic basics
- 3. Technology development

4. Process

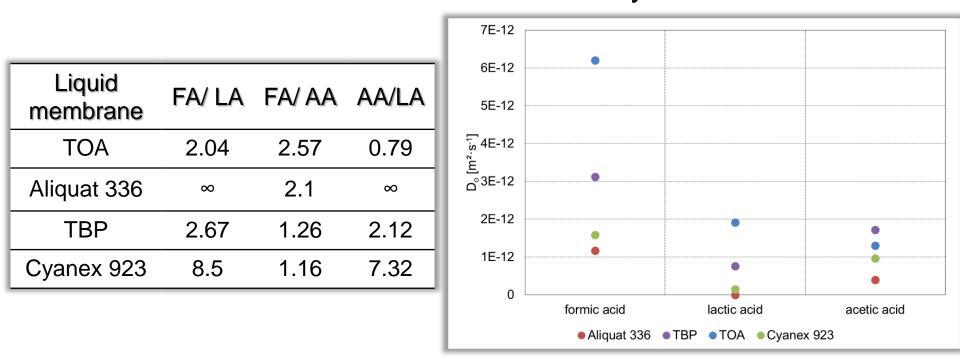


Results

CEET

- Transfer to liquid membrane permeation
- Selective separation

CEET


 $= \frac{V}{A \cdot \varepsilon} \cdot \frac{dc}{dt}$

Results – liquid membrane permeation

Diffusion controlled mass transfer

$$c_0] - [c] = \frac{[TOA]_{tot}}{n \cdot \frac{d_0}{D_0}} \cdot \frac{A \cdot \varepsilon}{V} \cdot t$$

• Further reactive extractants/selectivity

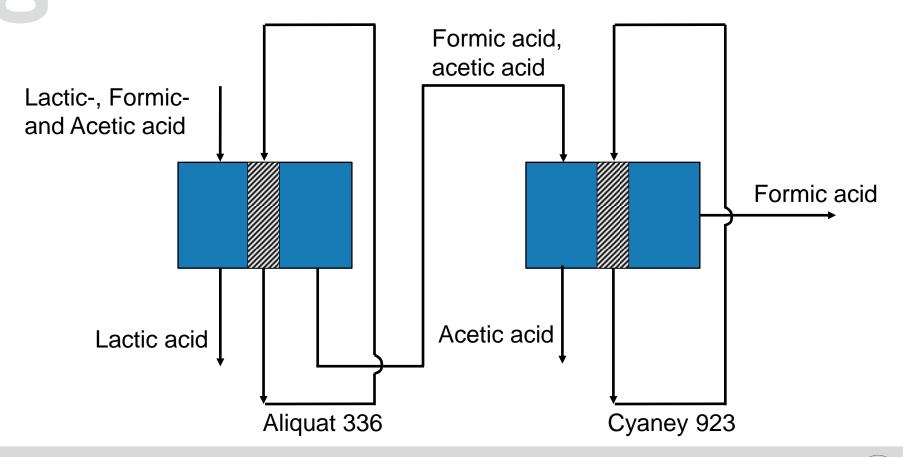
Research guideline

 Selective in-situ isolation of valuables (e.g. lactic acid) from aqueous process streams

Inlet stream knwon pH, T, p c_{valuables}, c_{others} Mass transfer unit operations

- 1. Thermodynamic basics
 - 2. Hydrodynamic basics
- 3. Technology development

4. Process



Process

ICEET

 Selective in-situ isolation of valuables (e.g. lactic acid) from aqueous process streams

Conclusion

- The working group biorefinery engineering
- Isolation of valuables from process streams in the biobased environment – challenges and approach
- Carboxylic acid isolation from modeled fermentation broth
- Phase equilibria data
- Emulsion prevention
- Liquid membrane permeation as potential future technology
- Process optimization two-step process

Acknowledgement

Work

Mungma Nuttakul, Moonhyun Gil, Ashleigh Newlands, Graeme Martin, Markus Hackl

Financing

Austrian Federal Ministry of Science, Research and Economy (BMWFW) within the framework of the ASEA UNINET

You

For your attention

Lignins and more

Biorefinery at the Institute of Chemical Engineering and Environmental Technology -TUGraz Marlene Kienberger Graz University of Technology marlene.kienberger@tugraz.at +43 316 873 7484

www.tugraz.at